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Preface

This investigation was supported by the Aquatic Plant Control Research
Program (APCRP), sponsored by the Office, Cnief of Engineers (OCE), and was
managed by th2 US Army Engineer Waterways Experiment Station (WES), Vicksburg,
Miss. The OCE Technical Monitor was Mr. E., Carl Brown.

This is the final report for Contract No. DACW39-81-C-0036, "A Mathemati-

cal Model of Submersed Aquatic Plants,” prepared by Rensselaer Polytechnic

Institute (RPI), Troy, N. Y. Authors of this report were Drs. Carol Desormeau

Collins, Richard A. Park, and Charles W. Boylen, RPI. The model was concep-
tualized and developed for incorporation into the US Army Corps of Engineers'
reservolr water quality model, CE-QUAL-Rl, which was developed during the con-
duct of the Environmental and Water Quality Operational Studies (EWQOS).
CE-QUAL-R]1 1is a numerical, one-dimensional model that describes the vertical
distribution of thermal energy and biological and chemical materials in a res-

ervoir through time.
zontal layers; temperature and materials concentration gradients are computed

only in the vertical direction.
The original contract called for the development of algorithms and the

programming of those algorithms for inclusion in CE-QUAL-R1. However, in sub-

sequent discussions with the contract officer at the time, Mr. Joseph Norton,
Environmental Research and Simulation Division (ERSD), and with other staff of
the WES, Environmental Laboratory (EL), including Drs. Joseph H, Wlosingki and
Allan S. Lessem, it was agreed that the programming should be done by the
Environmental Laboratory staff most familjar with CE-QUAL-R1. The draft
report was reviewed by Drs. Wlosinski and Lessem and Messrs. Mark S. Dortch
and Jack B. Waide.

Manager of the APCRP was Mr. J. Lewis Decell. General supervision was

provided by Mr. Donald L. Robey, Chief, ERSD. Chief of the EL during the con-

duct of this investigation was Dr. John Harrison.
Commanders and Directors of WES during the study and preparation of the

The mathematical structure of the model is based on hori-

O

report were COL Tilford C. Creel, CE, and COL Robert C. Lee, CE. Technical
Director was Mr. F. R. Brown. 1
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This report should be cited as follows:

Collins, C. D., Park, R. A., and Boylen, C. W, 1985, "A
Mathematical Model of Submersed Aquatic Plants," Miscellaneous
Paper A-85-2, prepared by Rensselaer Polytechnic Institute,
Troy, N. Y., for the US Army Engineer Waterways Experiment

Station, Vicksburg, Miss,
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A MATHEMATICAL MODEL OF SUBMERSED AQUATIC PLANTS

Introduction

Background

1. Submersed aquatic plants or macrophytes often contribute signifi-
cantly to the productivity of lakes and reservoirs. Macrophytes can become so
abundant that they become a nuisance to recreational and navigational activi-
ties. Their growth and decomposition also influence other biotic and abiotic
components of the ecosystem. The littoral community of many eutrophic systems
is often dominated by a single species of macrophyte. Under less eutrophic
conditions, weveral species may coexist. The growth of aquatic plants is con-
trolled by many factors, including (a) growth properties of the plant;

(b) physical factors such as temperature, irradiance levels, and changes in
water elevation; and (c) physiological characteristics of the plant such as
nutrient requirements, photoadaptation, and sediment preference.

2. The importance of macrophytes to the aquatic ecosystem necessitated
the development and incorporation of a macrophyte submodel in the US Army
Corps of Engineers' one-dimensional reservoir water quality model, CE-QUAL-R1
(Environmental Laboratory 1982), which was developed during the conduct of the
Environmental and Water Quality Operational Studies (EWQOS). This report
describes the development and formulation of this macrophyte submodel for
inclusion in CE-QUAL-Rl. The model simulates growth and decomposition of
macrophytes. The influence of the plants on other compartments in CE-QUAL-R1
is also included in the model.

3. To make the proposed submodel complementary with CE-QUAL-R1l, the
following recommendations are made regarding the computation and layering
scheme of CE-QUAL-R1, Macrophytes should be regarded as occupying the bottom
surface of each layer in the reservoir within the euphotic zone. As such,
they are not subject to advection or diffusion and are not transported in in-
flowing or outflowing waters. The macrophyte compartment should have units of
grams per layer. As the layers are resized in CE~QUAL-R1l, dependent on the
balance of inflowing and outflowing waters, the macrophyte biomass should be
reapportioned to reflect the appropriate densities for those layers. If the
surface elevation drops, macrophytes in the dewatered zone should no longer be

included in the computation. If the water surface elevation increases and
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inundates new areas, the macrophyte density in the new area should be given a
small "seed" value to represent colonization.

4., Irradiance reaching a particular model layer determines the plants'
growth response. Changes 1n water level can affect irradiance at a particular
level. Drawdown may suddenly expose submersed plants to higher irradiances as
the depth of water through which light is transmitted decreases. Conversely,
an increase in reservoir pool elevation may result in greater light attenua-
tion. Light attenuation for a particular layer in CE-QUAL-R1 is dependent
upon the extinction coefficient of water and on shading by suspended solids,
detritus, zooplankton, and phytoplankton. It is recommended that self-shading
for macrophytes also be included in the model.

5. The following processes are recommended for inclusion in the macro-~
phyte model: gross production, dark respiration, photorespiration, nonpreda-
tory mortality, and grazing. Control measures affecting macrophytes, such as
mechanical harvesting and herbicidal treatment, should also be included in the
model as described in this report. Decomposition processes already modeled in
CE-QUAL-R1 would be affected by macrophyte contributions to existing detritus
and sediment compartments. A flow diagram of the interactions of the new
macrophyte compartment with other model compartments summarizes the proposedﬁ

changes to CE-QUAL-R1 (Figure 1).
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Figure !. Compartment diagram of macrophyte model recommended for CE-QUAL-R}
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Report composition

6. In the following section the specific physiological processes recom-
mended for inclusion in a new macrophyte subroutine are formulated for incor-
poration into CE-QUAL-R1. Next, a geometric scheme for apportioning macrophyte
biomass among model layers is discussed. The next major section contains
recommendations for the simulation of macrophyte control measures (mechanical
harvesting, herbicidal treatment). The next section discusses the validation
of select process formulations based upon published data on two macrophyte
species, Myriophyllum spicatum and Hydrilla verticillata. The final section
summarizes the major recommendations contained in this report. Two appendices
are also included. Appendix A presents equations included in a stand-alone
version of the macrophyte submodel used in the process validation studies,
while Appendix B lists representative values for parameters included in the
proposed macrophyte submodel based on published research on M, spicatwm and
H. verticillata. The material contained in this report will be included in a
final, revised edition of the CE-QUAL-R1 User's Manual (Enviromnmental Labora-
tory 1982) scheduled for publication in 1985.

Recommended Physiologic Processes

7. The differential equation for the macrophyte state variable expresses
conservation of mass in each horizontal model layer. The solution provides
material concentrations as functions of time and depth. The equation is mathe-

matically expressed as follows:

rate of
change gross dark
of mass | = | macrophyte * production - respiration - photorespiration
-1 biomass rate rate rate
g day
mechanical
nonpredatory or
-~ grazing - mortality - chemical @9
rate rate harvesting
rate

Each of the individual terms in this equation is discussed in the subsections
which follow. The style of presentation follows that contained in the




CE-QUAL-R1 User's Manual (Environmental Laboratory 1982) which should be con-

sulted for further details. The overall structure of CE-QUAL-R1 will not

presented here.

be

Only those macrophyte process terms specifically included in

the proposed new macrophyte submodel will be documented plus their interac-

tions with other compartments in CE-QUAL-RI.

Macrophyte processes

8. Gross production. The daily photosynthetic or gross production

rate

is a function of temperature, light intensity, and nutrient concentration:

PLTGRO = PLTMAX * RMULT1(T) * RMULT2(T) * MIN(XLIMN,XLIMP,XLIMC) * XLIML

where

PLTGRO

PLTMAX
RMULT1,2(T)

XLIMN

XLIMP

XLIMC

XLIML

photosynthetic rate, day_1

user-specified maximum photosynthetic rate, day“1
temperature limitation functions, unitless
limitation function for nitrogen, unitless
limitation function for phosphorus, unitless
limitation function for carbon, unitless

limitation function for light intensity, unitless

(2)

9. Temperature limitation is calculated using the equations developed

by Thornton and Lessem (1978):

o
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A
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A -
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Kz(l - K,)

1 1
A, = In

1 T, - T, Kl(l - Kz)
A, = 1 in K3(1 _ Ka)

2 T, - T, K4(1 - K3)

As is the case in the parent model CE-QUAL-RI, T1 and T4 represent the
user-specified lower and upper lethal temperatures for the processes in
question, while T2 and T3 (also user specified) define the range of
optimum temperatures over which the process occurs at near the maximum rate
(Environmental Laboratory 1982)., The term T represents the computed
temperature of a specific layer in the model CE-QUAL-R1. The corresponding
user-specified K values define the relative rates (i.e., on a 0 to 1 basis)
at which the process occurs at each of these temperatures.

10. Nutrient limitation is dependent upon the concentrations of nitrogen
and phosphorus in the water column and sediment and on the carbon concentration
in the water column. The nutrient determined to be limiting based upon the
following Monod equation is used in the photosynthesis calculation

(Equation 2):

XLIM(N,C,P) = (4)

_Cc
KI/Z + C
where

XLIM(N,C,P)

nutrient limitation function for nitrogen, carbon, and
phosphorus, unitless

C = concentration of respective nutrient in the water
column (N, C, P) or sediment (N, P), g o3
K1/2 = user-specified half-satuz;tion coefficient for the
respective nutrient, gm

The limiting nutrient 1s defined in this context as the one giving the minimum
value of Equation 4.

11. Many nutrients used by freshwater submersed macrophytes, including
both nitrogen and phosphorus, are obtained primarily through the roots from
sediment (Best and Mantai 1978; Bole and Allan 1978; Carignan and Kalff 1980;

DeMarte and Hartman 1974; Nichols and Kinney 1976). CE-QUAL-RI] has

R




APPENDIX A: MACROPHYTE MODEL STAND-ALONE VERSION

Introduction

1. A stand-alone version of the macrophyte model was developed to
verify and validate several of the recommended process equations for a single
model layer. This appendix provides a list of the state variable equations 4
used in this version of the model. Seven compartments are represented by the
model, including macrophytes, dissolved oxygen, particulate organic matter
(POM) , dissolved organic matter (DOM), phosphorus, nitrogen, and organic sedi-
ment. The individual process equations which together comprise the state
variable equations are also described herein. A parameter list (Table Al)
describes each of the parameters used in the process equations and the values
used in running the stand-alone version.

2. The macrophyte process equations correspond to those given in the
main body of this report (although several variable names have been changed in
this version of the model). Equations for the other six state variables con-
tain terms reflecting the impacts of macrophyte processes on other components
of aquatic ecosystems, This stand-alone version of the model is appropriate
for implementation on a microcomputer.

3. There are some differences between the stand-alone version of the
model and that recommended for CE-QUAL-R1. For the stand-alone version,

(a) it was assumed that macrophyte production was not nutrient limited,

(b) contributions to nutrients from macrophyte respiration were not included,
and (c) contributions to nutrients from macrophyte nonpredatory mortality are
included. Additionally, CE-QUAL-RI does not include harvesting as the stand-

alone version does.
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Recommendations

31. It is recommended that the model for submersed aquatic plants
described in this report be incorporated in the CE-QUAL-R1 model with due con-
sideration of the following points:

a. The light response function should permit representation of pho-
toinhibition (this same algorithm should be used for algae in
CE--QUAL-R1).

b. Because nutrients are an explicit part of the photosynthesis
algorithm, limitation should be based on the Monod function for
the nutrient shown to be limiting using threshold ratios.

c¢c. The spatial relationships of the rooted zome of macrophytes to
the model layers should be accounted for based on the intersec-
tion of model layers with the reservoir bottom, creating a two-
dimensional array of cells for macrophyte computations; the
macrophytes should be apportioned into the vertical layers based
on cell-by-cell computations and a comparison with a user-
specified maximum macrophyte density in each cell; this algo-
rithm can also be used to determine the biomass of macrophytes
cut by a mechanical harvester set at a particular depth.

d. Chemical control can be modeled using dose-response
relationships.
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Depending on how the chemical control program is implemented, the macrophyte
mass killed can be transferred as appropriate to other model compartments

(detritus, sediment, dissolved organic matter).

Process Validation

27. Select process equations included in the proposed macrophyte sub-
model have been validated based on experimental results from the literature
and published experimental results performed at the US Army Engineer Waterways
Experiment Station by Dr. John Barko and colleagues. Data on two macrophyte
species of particular interest to the Corps were used in this validation pro-
cedure, M. spicatum and H. verticillata. Results of validating several spe-
cific equations in the macrophyte model are discussed in the following
paragraphs.

28, The equation used to represent the photosynthetic light response is
that of Steele (1962) (see Equation 5 and Appendix B). Figures 3 and 4 demon-
strate that this equation fits experimental data from Van, Haller, and Bowes
(1976) for M. spicatwm and from Barko et al. (1980) for H. verticillata. The
parameter PISAT, which describes the saturating light intensity for photosyn-
thesis, was set at 112 and 196 kcal m-'2 hr-l, respectively, for M. spicatum '
and H. verticillata (Appendix B). Photoinhibition at high light intensities |
can also be predicted using this equation. Although this type of response of t
these two species to high light intensities has not been observed, other spe- ‘
cies demonstrate photoinhibition which could be significant during reservoir
drawdown.

29. The effect of temperature on photosynthesis is represented using the
equation of Thornton and Lessem (1978) (Equation 3). Validation of this equa-
tion for H. vertiecillata, based on results of Barko et al. (1980), is demon-
strated in Figure 5. The parameter values used in this equation are as fol-
lows: Tl = 10°C, T2 = 20°C, T3 = 24°C, T4 = 32°C, K1 = 0,01, K2 = 0.98,

K3 = 0,98, and K4 = 0.30 (Appendices A and B).

30. Validation of the equation representing dark respiration (Equa-
tion 6) is represented in Figure 6 for 4. vertiecillata. The parameter values
used are as follows: Tl = 5°C, T2 = 25°C, Kl = 0,01, and K2 = 0.98
(Appendix B).
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The index J ranges from 1 (top layer) up to a user-specified value indicating
the maximum number of layers in which macrophytes can occur (actually, the

If all the mass in that column can be con-
Otherwise, Equation 9 is

maximum rooting depth in metres).
tained in the bottommost cell, it is placed there.
iterated (i.e., the value of J is increased sequentially) until the calculated

total macrophyte mass for that column is apportioned among cells in that col-
umn, such that the mass in each cell is less than or equal to the maximum cal-
culated with Equation 9. The total macrophyte mass is then calculated for

each model layer by summation, and for the entire reservoir.

Management Control Processes

25. In addition to ecological processes, the model cai also simulate
management control processes including mechanical harvesting and chemical con-
trol of the plants. Macrophyte mass removed by mechanical harvesting is a
function of plant rooting depth and mass density as well as the cutting depth
of the mechanical harvester. Having determined macrophyte biomass in each
model layer, the amount cut (MBIOCUT) by a mechanical harvester set at a par-
ticular cutting depth (CUTZ) can be calculated by summation. If the cutting
depth falls between layer boundaries, then an appropriate fraction of the
macrophyte mass in that layer can be removed since mass is assumed to be dis- |

tributed homogeneously within layers.
26. Chemical control is a function of the following dose-response curve

for the herbicide used:

MCHEM(I) = MACRO(I) * CHEM/(LC50 + CHEM) (10) ‘

where
MCHEM(I) = macrophyte biomass killed in layer I, g

CHEM = ugser-specified ambient environmental concentration of

herbicidc applied, ug 9,-1

LC50 = uger-specified herbicide concentration which will kill
50 percent of the macrophytes, ug 2-1

MACRO(I) = total macrophyte biomass in layer I, g 3 .
|

i

|
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the Ith layer. The actual volume of the Ith layer, DVOL(I), is calculated as
the diffarence between VOL(I+1) and VOL(I)., Both volume and area are typi-
cally represented as power functions of elevation.

23. Using this scheme, a series of vertical segments or columns can be
superimposed at the points at which boundary layers intersect the reservoir
bottom (Figure 2b), creating a series of two-dimensional cells for macrophyte
computations (Figure 2¢). To simplify the computational sequence, these cells
are numbered from the reservoilr surface down, and from upstream toward the
dam. A given cell is indexed (1,j) with i referring to row position and j to
column. Because each of the layers in the model representation of a reservoir
is extremely long and thin, the bottom surface area in which macrophytes root
can be approximated as the difference AREA(I+1) - AREA(I). Similarly, the
volume of each computational cell can be approximated as this bottom surface
area times the thickness (SDZ) of the layer in which that cell occurs. These
bottom areas and cell volumes are used in macrophyte computations as described
in the following paragraph.

24. Macrophytes are associated with the bottom sediments in which they
are rooted and with the overlying water column. In order to determine how
macrophyte mass is apportioned among the cells in a given vertical column, the
assumption is made that the volumetric density of macrophyte dry mass cannot
exceed a user—specified maximum value (PLDENS, g m-3). At each model time
step, the macrophyte differential equation (Equation 1) is solved on a cell-
by-cell basis using a simple Euvler procedure and the mass i1s calculated at the
previous time step as an initial value. Then macrophyte mass is summed over
all cells in a given column. Beginning with the bottommost cell (i.e., the
one nearest the sediment), this summed mass is apportioned among cells by com-
paring it with the maximum mass which each cell can contain. For cells in the

Ith column, this maximum is calculated as

DATA(J,I) = PLDENS * SDZ(J) * (AREA(I+1) - AREA(I)) 9

where

DATA(J,I) = maximum macrophyte mass which can be contained in the
cell in layer J and column I, g

PLDENS = user-specified maximum macrophyte volumetric density, g m
SDZ(J) = thickness of Jth model layer, m

AREA(I) = bottom surface area at layer I, m2

13
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coefficients are involved. In a similar manner, grazing represents a direct
transfer of mass to fish, without conversion. As a consequence of nonpreda-
tory mortality, macrophyte biomass is transferred to dissolved organic matter,
detritus, and sediment compartments. The "dead" biomass is apportioned
between the three receiver compartments based on user-specified coefficients.
20. Included in Appendix A is a stand-alone version of the macrophyte
model which was used in validating the various process equations just dis-
cussed. In addition to containing the equations describing macrophyte physio-
logical processes (Equations 1-8), this version of the model also contains
equations for oxygen, particulate organic matter, dissolved organic matter,

phosphorus, nitrogen, and sediment. This model thus illustrates the way in

which macrophyte terms enter into equations for other water quality constitu-
ents included in CE-QUAL-R1. 1In Appendix B, representative values for the
parameters included in Equations 1-8 of the macrophyte model (as defined in
Appendix A) are listed, based on research on two macrophyte species of par-
ticular interest, Myriophyllum spicatum and Hydrilla verticillata. CE-QUAL-

Rl-related parameters and coefficient values are also listed in Appendix B.

Spatial Relationships

21, 1In order to describe vertical growth of macrophytes in a one-
dimensional, variable-layer model like CE-QUAL-R1, it was necessary to devise
a means of geometrically segmenting the model into a matrix of rows (layers)
and columns. This matrix defines the volume of each segment and the proximity
of one segment to another. A description of how the matrix can be incor-
porated into the CE-QUAL-R1 model follows.

22. CE-QUAL-Rl is a one-dimensional model with multiple layers. Thermal
energy and materials are assumed to be uniformly distributed within each model
layer. Reservoir morphometry is represented in the model by a variable-layer
approach (i.e., layer dimensions vary over time based on inflows and cutflows
and on user-specified morphometric relationships of area and volume to eleva-
tion above the reservoir bottom), Relationships among elevation, area, and
volume are depicted in Figure 2a. A given layer (numbered I, from the bottom
up) is specified as being Z(I) metres above the bottom and SDZ(I) metres
thick. The area of the Ith layer, AREA(I), is defined at the lower boundary

of that layer. A volume, VOL(I), is also defined up to the lower surface of

12




calculated as the product of the two temperature limitation functions, RMULTI
and RMULT2 (Equation 3), times a user-specified maximum figh grazing rate,
times a Monod function similar in form to Equation 4. In this fish-grazing
limitation function, the role of C (Equation 4) is played by the sum, over
all types of food (including macrophytes) ingested by fish, of products of a
user-specified preference factor for that food type and the concentration of
that food type. For this grazing functionm, Kl/Z (in Equation 4) would again
be a user-specified half-saturation coefficient for fish grazing. The reader
should consult the CE-QUAL-R1 User's Manual (Environmental Laboratory 1982)
for further details. An additional preference factor would need to be in-
cluded in the model, specifying the fractional preference of fish for
macrophytes.
Interactions with other
compartments in CE-QUAL-RI

18. As depicted in Figure 1, those macrophyte processes discussed above

also impact a variety of other compartments in CE-QUAL-R1. Thus, correspond-
ing to the process equations given above (Equations 1-8), terms will need to
be added to or subtracted from other equations in the model. These terms rep-
resent the addition or removal of mass to or from other compartments in the
modeled reservoir. These terms will be briefly described here. Although the
actual equations will not be provided, they correspond exactly to the form of
the equations listed previously.

19. As a result of macrophyte photosynthetic processes, oxygen is
evolved. This 1is modeled as an "equivalent oxygen concentration," calculated
as the product at the gross production rate of concentration and a user-
specified oxygen-to-biomass stoichiometric coefficient, which is added
directly to the oxygen differential equation., Similarly, dark respiration
removes oxygen. This removal, a subtraction from the oxygen equation, is cal-
culated as the product of the dark respiration rate of concentration and
another user-specified stoichiometric coefficient. Gross production and
respiration also result in the uptake and release, respectively, of nutrients
(N, P, C) from and to the water column and sediments (Figure 1). These trans-
fers are calculated as the product of the production and respiration rates of
concentration and user-specified nutrient-to-biomass stoichioretric coeffi-
cients. Photorespiration represents a direct addition of mass to the ammonia-

nitrogen, phosphorus, and dissolved organic matter compartments; no conversion

11
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mathematically using only the rising limb of the temperature equation of

Thornton and Lessem (1978) (Equation 3):

MRESP = MKKESP * RMULT1(T) (6)

where
MRESP = dark respiration rate, day_1

MKRESP = user-specified maximum dark respiration rate, day_
Photorespiration or excretion is important be-
' whereby nu-

15. Photorespiration.

cause it results in the phenomenon known as "nutrient pumping,’
This process also

trients are transferred from bottom sediments to water.
increases the amount of organic matter dissolved in the water column.
Under conditions of very high or very

Excre-

tion is a function of light intensity.

low light intensities, the rate of extracellular release increases. Mathe-
matically this is represented as
MEXCR = (1 - XLIML) * MKEXCR (7N

where
MEXCR = excretion rate, day_1
MKEXCR = user-specified maximum excretion rate, day”

16. Nonpredatory mortality. Nonpredatory mortality is temperature-

dependent when the change in temperature (increase or decrease) over a 7-day
Therefore, 1if

period exceeds a critical maximum temperature TMPMAX .,

| TMPTUR(1) - TMPTUR(7)| > TMPMAX:

MMORT = MKMORT (8)

where
TMPTUR(1l) and TMPTUR(7) = water temperature over 7-day period, °C

TMPMAX = maximum temperature change, °C
MMORT = nonpredatory mortality rate, day-l
MKMORT = user-specified maximum nonpredatory mortality
rate, day-
Grazing of macrophytes by fish 1s modeled with the same

17. Grazing.
used in CE~QUAL-R1. Thus, the grazing rate is

type of grazing function as

10
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compartments representing sediment nitrogen and phosphorus; therefore, limita-
tion of nutrients obtained through the roots can occur, although this is rare
in nature. This process is most important in allowing "nutrient pumping” from
the sediments into the water column.

12. In some cases where nutrient concentrations in the water are high,
it becomes advantageous for the plant to draw nutrients from the water column.
In water with a phosphorus concentration of 2.0 mg L-l, characteristic of
eutrophic reservoirs, Myriophyllum spicatum took phosphorus from the water
column (Bole and Allan 1978). This is modeled using a species-specific
parameter to indicate the water concentration above which nutrients are taken
from the water column. Whenever the water column concentration of nitrogen or
phosphorus equals or exceeds this user-specified concentration, it is the
water concentration of that nutrient which is entered into the Monod equation
(Equation 4). Otherwise, it is the sediment concentration of nitrogen or

phosphorus which is used in Equation 4.
13. Light limitation is represented using Steele's equation (1962):

0.5 * SWSA 0.5 * SWSA
XLIML ( PISAT exp [1 - ( PISAT )] (%)

where

SWSA = average irradiance for a specific model layer, kcal m-2 hr~
(calculated in Subroutine HEAT in CE-QUAL-R1)

PISAT = user-specified irradiance level at which the photosynthetic rate
is saturated (i.e., occurs at maximum rate), kcal m-2 hr—1

The coefficient value 0.5 is used in Steele's equation to represent the frac-
tion of total irradiance that is photosynthetically active radiation (PAR).
PAR is in the range of 400 to 700 nm. Steele's equation can predict photoin-
hibition of photosynthesis at high light intensities, above the level speci-
fied by PISAT. Solar radiation is distributed vertically in the water column
in CE-QUAL-R! based upon the extinction coefficient for water. Light is also
attenuated by self-shading by algae, zooplankton, detritus, and suspended
solids. An additional self-shading coefficient should be included in the
model to account for the effect of macrophyte biomass on light attenuation.

14. Dark respiration. Dark respiration is a function of temperature.

As with other respiratory rates in CE-QUAL-R1, it 18 represented
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State Variable Equations*

Macrophyte
MKCRO = MPROD - MRESP - MEXCR - MMORT - MHVST

macrophyte = photosynthesis - dark respiration - excretion (photo-

respiration) ~ mortality - harvesting

Oxygen
[
OXYGEN OTST + OMAC - ANIT - OPDK - ODDK - OSDK

Oxygen = oxygen saturation + contribution from macrophytes

- equivalent loss from nitrogen decay - equivalent loss from POM decay

- equivalent loss from DOM decay - equivalent loss from sediment decay
Particulate organic matter

POM = PMAC - PDK - PSTL

POM = contribution from macrophyte mortality and narvesting

- loss from POM decay - loss from settling

Dissolved organic matter
[ 4
DOM = DMAC + DEXCR + DDK - DBAC
DOM = contribution from macrophyte mortality and harvesting + contribu-

tion from macrophyte excretion + contribution from POM decay - loss from

bacterial respiration
Phosphorus (water column)
P54 = FMAC + FDK + FEXCR - FSINK
P04 = contribution from macrophyte mortality and harvesting + contribu-

tion from decay of POM and sediments + contribution from macrophyte

excretion - loss to algal production

* FEach equation represents theuiime rate of change of the state variable for
a model layer. The units of MACRO are grams per square metre per day per
model layer. The units of all other state variables are grams per square
metre per day per metre of model layer.

A2




Nitrogen (water column)

N = NMAC + NDK + NEXCR - NSINK
N = contribution from macrophyte mortality and harvesting
+ contribution from decay of POM and sediments
+ contribution from macrophyte excretion - loss to algal production

Organic sediment
SED = SMAC - SDK

SED = contribution from macrophyte mortality and harvesting

- loss from sediment decay

Process Equations

Macrophyte

MPROD = PMAX * RMULT1(T) * RMULT2(T) * LIGHT * MACRO

where
PMAX = maximum photosynthetic rate, day'-l

RMULT1(T) = temperature limitation function, unitless
RMULT2(T) = temperature limitation function, unitless
T = ambient water temperature, °C
LIGHT = light limitation function, unitless
MACRO = macrophyte biomass, g m

ISAT ISAT

(=0.5-10) e-eZZ] [(-o.s~zo) e-ezx]
- e

e
LIGHT = c(Z2-ZD)

where
extinction coefficient

Z2 = depth at the bottom of the simulated section, m

(]
]

Z1 = depth at the top of the simulated section, m
10 = irradiance at the water surface, kcal a2 sec”!

ISAT = saturating irradiance for photosynthesis, kcal --2 uc.l

!
i
{
!




MRESP = KRESP * RMULT1(T) * MACRO

where
KRESP = user-specified maximum respiration rate, g g-l day-l

MEXCR = KEXCR * (1-LIGHT) * MACRO

where
KEXCR = user-specified maximum excretion rate, g g-l day”1

If, |TMPTUR(1) - TMPTUR(7)| is greater than TMPMAX, then

MMORT = KMORT * MACRO :
!

where
-1

KMORT = nonpredatory mortality rate, g g day

TMPMAX = critical maximum temperature difference over a
7-day period, °C

TMPTUR(1) and TMPTUR(7) = water temperatures over a /-day period, °C [

MHVST = CHEM * MACRO ‘

where
CHEM = rate of die-off of macrophyte dependent upon type of chemical
1 -1

used, g g = day
NOTE: Mechanical harvesting is calculated outside the differential

equation as follows:

MWH + MACRO = MHT
Z - MHT = TPLT

CUTZ - TPLT = MCUT :
MWH ¢ MCUT = MBIOCUT 'J

u .,
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where
MWH = species-specific weight-to-height ratio, B n“l
MHT = macrophyte height, m
Z = depth of water column, m
TPLT = top of plant, m
CUTZ = cutting depth of mechanical harvester, m
MCUT = amount of macrophyte cut, m

MBIOCUT = biomass of macrophyte cut, g ln_2

Ongen
OTST = (14,6 * exp(-(0.027767 - 0.00027 * T

+ 0.000002 * T * T) * T)) % z2 |
OMAC = (OMACEQL * MPROD) ~ (OMACEQ2 * MRESP)
ANIT = ONEQ * NMAC
OPDK = OPEQ * PDK
ODDK = ODEQ * DDK
0SDK = OSEQ * SDK

Particulate organic matter
PMAC = (MMORT * M1) + (MHVST * H1) f
PDK = KPOM * POM * RMULTI(T) I
PSTL = (PMSTL * MMORT) + (PHSTL * MHVST)
KPOM = 0.01192 * 1/NTC(2) + 0.00672 ?

Dissolved organic matter
DMAC = (MMORT * M2) + (MHVST * H2)
DEXCR = MEXCR * E2 ;
DDK = PDK #* P2

DBAC = KDOM * DOM * RMULT1(T)
KDOM = 0,024 * 1/NTC(3) + 0.0192
Phosphorus

FMAC = (MMORT * M3) + (MHVST * H3)

FDR = (PDK * P3) + (SDK * S3)
FEXCR = MEXCR * E3
FSINK = photoplankton biomass * FRS

A5
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Nitrogen
NMAC = (MMORT * M4) + (MHVST * H4)
NDK = (PDK * P4) + (SDK * S4)
NEXCR = MEXCR * E4
NSINK = photoplankton biomass * NRS
Sediments

SMAC = (MMORT * M5) + (MHVST * H5)
SDK = KSED * SED * RMULT1(T)
KSED = 0.00519 * 1/NTC(4) + 0.00346

|
|
[
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APPENDIX B: MACROPHYTE MODEL PARAMETER LIST

Tabulated in Table Bl in this Appendix are values for specific parameters
included in the state variable and process equations which comprise the macro-
phyte model proposed in the main body of this report (as intended for inclu-
sion in CE-QUAL-R1). These values were either derived from published litera-
ture sources or established in the process validation studies described
earlier. Most values tabulated here apply to one or two macrophyte species of
interest, Myriophyllum spicatum or Hydrilla verticillata.

Bl
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